Ex 12.1 NCERT Solutions Class 9 Chapter 12
The solutions to exercise 12.1 (from class 9th's maths NCERT book) are given below. The exercise has 6 questions which have been explained thoroughly with proper reasoning.
The traffic signal board is an equilateral triangle with a perimeter 180 cm
Perimeter = sum of all sides
180 = 3a
60 cm = a
Semi-perimeter = 90 cm
The area of the triangle according to Heron’s formula is
Area = √s(s-a)(s-a)(s-a) (since all sides are equal)
= √90 (90-60)(90-60)(90-60)
= √90 (30)(30)(30)
= 3 x 3 x 100√ 3
= 900√3 cm2
Let a = 122 m, b = 22 m, c = 120 m; the three sides of the triangular-shaped wall Area of the triangle = 1/2 x base x height = 1/2 x 120 x 22 = 60 x 22 = 1320 m2 I m2 of the wall is rented for = Rs 5000/year 1320 m2 of the wall will fetch rent = 5000 x 1320 => Rs 6600000/year Rent for 12 months = Rs 6600000 Rent for 3 months will be = 6600000 x 3/12 = Rs 1650000
Let a= 11 m, b= 6 m and c = 15 m be the sides of the side walls of the triangular slide Semi perimeter, s = (a+b+c)/2 s= (11+6+15)/2 s= 32/2 s = 16 m Area of the painted side wall = √(s(s-a)(s-b)(s-c)) = √(16(16-11)(16-6)(16-15)) = √(16(5)(10)(1)) =20√2 m2
Two sides of a triangle = a= 18 cm and b = 10 cm; let the third side be c
Perimeter of the triangle = 42 cm
18 cm + 10 cm + c = 42 cm {i.e. sum of all the sides of the triangle = 42 cm}
28 + c = 42
c=42-28
c=14
Semi perimeter: (a+b+c)/2
s= (18+10+14)/2
s=42/2
s= 21 cm
Area of the triangle: √s(s-a)(s-b)(s-c) = √(21(21-18)(21-10)(21-14)) = √(21)(3)(11)(7)
= 21√11 cm2
Let the sides of the triangle be a=12x, b=17x, and c=25 x
Perimeter of the triangle = 540 cm
12x + 17x + 25x = 540
54x = 540
x= 10 cm
So the sides are 120 cm, 170 cm and 250 cm
Semi perimeter = Perimeter/2 = 540/2 = 270 cm
Area of the triangle: √(s(s-a)(s-b)(s-c) ) = √(270(270-120)(270-170)(270-250) ) = √(270(150)(100)(20) ) = √((9)(30)(30)(5)(5)(20)(20) ) = 3 x 30 x 5 x 20 = 9000 m2
Let the sides of the isosceles triangle be a= 12 cm, b= 12 cm and c
Perimeter = a+ b+ c
30 = 12+ 12 + c
30 – 24 = c
6 cm = c
Semi perimeter = Perimeter/2 = 30/2 = 15 cm
Area of the triangle: √(s(s-a)(s-b)(s-c) ) = √(15(15-12)(15-12)(15-6) ) = √(15(3)(3)(9) ) = 9√15 cm2
0 Comments