Ex 12.2 NCERT Solutions Class 9 Chapter 12
The solutions to exercise 12.2 (from class 9th's maths NCERT book) are given below. The exercise has 9 questions which have been explained thoroughly with proper reasoning.
Draw a diagonal BD, such that triangle BCD is a right-angled triangle
Using Pythagoras theorem
BD2 = BC2 + CD2
= 122 +52
= 144 + 25
= 169
BD2 = 132
BD= 13 cm
Area of the right triangle BCD = 1/2 x base x height = 1/2 x 12 x 5 = 30 cm2
In Triangle ABD, AB= 9 cm, BD = 13 cm and AD = 8 cm
Semi perimeter = (a+ b+ c)/2 = (9+13+ 8)/2 = 30/2 = 15 cm
Area of triangle ABD = √(s(s-a)(s-b)(s-c) ) = √(15(15-9)(15-13)(15-8) ) = √(15(6)(2)(7) )
= 6√35 cm2 = 6 x 5.916 = 35.49 cm2
Area of the quadrilateral = Area of triangle ABD + Area of triangle BCD
= 35.49 +30 = 65.49 cm2
Area of triangle ABC
a= 3cm, b= 4cm and c= 5cm
Semi perimeter = (a+ b+ c)/2 = (3+4+ 5)/2 = 12/2 = 6 cm
Area of triangle ABC = √(s(s-a)(s-b)(s-c) ) = √(6(6-3)(6-4)(6-5) ) =√(6(3)(2)(1) )
= 6 cm2
Area of triangle ACD
a=5 cm, b=4 cm, c=5 cm
Semi perimeter = (a+ b+ c)/2 = (5+4+ 5)/2 = 14/2 = 7 cm
Area of triangle ACD = √(s(s-a)(s-b)(s-c) ) = √(7(7-5)(7-4)(7-5) ) =√(7(2)(3)(2) )
= 2√21 cm2 = 2 x 4.5825 = 9.16 cm2
Area of the Quadrilateral= Area of triangle ABC + Area of triangle ACD
= 6 + 9.16 => 15.16 cm2
Area of IV & V = 2 x area of right triangle
Area of IV & V =2 x ( 1/2 x base x height)
= 1.5 x 6 => 9 cm2
Area of II = area of the rectangle => length x breadth
= 6.5 x 1 => 6.5 cm2
Area of I
a=5 cm, b=5 cm, c=1 cm
Semi perimeter = (a+ b+ c)/2 = (5+1+ 5)/2 = 11/2 = 5.5 cm
Area of triangle ACD = √(s(s-a)(s-b)(s-c) ) = √(5.5(5.5-5)(5.5-1)(5.5-5) ) =√(5.5(0.5)(4.5)(0.5) ) => 2.48 cm2
Area of III
Square of side 1 cm
Area = 1 cm2
Two right angled triangles with base 0.5 cm and height = 0.866 cm
Area of 2 such triangles = 2 x ( 12 x base x height)
= base x height => 0.5 x 0.866 = 0.433 cm2
Area III = 1 + 0.433 = 1.433 cm2
Area of paper used= 9 + 6.5 +2.48 + 1.433 = 19.42 cm2
Area of triangle
a=26 cm, b=28 cm, c=30 cm
Semi perimeter = (a+ b+ c)/2 = (26+28+ 30)/2 = 84/2 = 42 cm
Area of triangle = √(s(s-a)(s-b)(s-c) ) = √(42(42-26)(42-28)(42-30) ) =√(42(16)(14)(12) ) =√((7)(6)(16)((7)(2))((2)(6)) ) = 7 x 6 x 4 x 2 = 336 cm2
Parallelogram’s base = 28 cm
Area of Parallelogram = base x height
336 = 28 x height
Height = 12 cm
Smaller triangle
OA2 + OD2 =AD2
242 + OD2 = 302
OD2 = 900 – 576
OD2 = 324
OD = 18 cm
So the smaller diagonal is 36 cm (d2) long
Area of the rhombus = 12 x d1 x d2 = 12 x 48 x 36 = 24 x 36 = 864 cm2
Each cow will get grazing area = Area of the rhombus/18 = 864/18 = 48 cm2
Area of 1 triangle
a=20 cm, b=50 cm, c=50 cm
Semi perimeter = (a+ b+ c)/2 = (50+50+20)/2 = 120/2 = 60 cm
Area of triangle = √(s(s-a)(s-b)(s-c) ) = √(60(60-50)(60-20)(60-50) ) =√(60(10)(40)(10) ) =100√((6)(4)) =200√6
There are 5 blue and 5 white triangles
Cloth required for each color
= 200√6 x 5 = 1000√6 cm2Let the side of the square be ‘a’
Diagonals bisect each other at 90 degrees, so consider this figure
Area of region I = 1/2 X base x height
= 1/2 X 32 x 16 = 256 cm2 = Area of region II
Area of region III
It’s an isosceles triangle with sides 6 cm each and base 8 cm
a=6 cm, b=6 cm, c=8 cm
Semi perimeter = (a+ b+ c)/2 = (6+6+8)/2 = 20/2 = 10 cm
Area of triangle = √(s(s-a)(s-b)(s-c) ) = √(10(10-6)(10-6)(10-8) ) =√(10(4)(4)(2) ) = √((2)(5)(4)(4)(2) ) =8√5 cm2 = 17.88 cm2
Area of 1 triangular tile
a=9 cm, b=28 cm, c=35 cm
Semi perimeter = (a+ b+ c)/2 = (9+28+35)/2 = 72/2 = 36 cm
Area of triangle = √(s(s-a)(s-b)(s-c) ) = √(36(36-9)(36-28)(36-35) ) =√(36(27)(8)(1) ) = 36√6 = 88.18 cm2
Area of 16 such tiles = 88.16 cm2 x 16 = 1410.906 cm2
Cost of polishing 1 cm2 of a tile = Rs 0.50
Cost of polishing 1410.906 cm2 = 1410.906 x 0.50 => Rs 705.45
Area of triangle BCE
a=13 cm, b=14 cm, c=15 cm
Semi perimeter = (a+ b+ c)/2 = (13+14+15)/2 = 42/2 = 21 cm
Area of triangle = √(s(s-a)(s-b)(s-c) ) = √(21(21-13)(21-14)(21-15) ) =√(21(8)(7)(6) ) = √((3)(7)(4)(2)(7)(3)(2)) = 3 X 7 X 2 X 2 = 84 cm2
Also, Area of triangle = 1/2 x base x height
84 = 1/2 x 15 x height
Height = 11.2 cm
Area of trapezium = 1/2 x (sum of parallel sides) x height
= 1/2 x (10+25) x 11.2
= 35 x 5.6 = 196 cm2
0 Comments