Maths NCERT Solutions for Class 9 Chapter 2 Exercise 2.2

Ex 2.2 NCERT Solutions Class 9 Chapter 2

The solutions to exercise 2.2 (from class 9th's maths NCERT book) are given below. The exercise has 4 questions which have been explained thoroughly with proper reasoning. 


(i) p(x)= 5x – 4x2 + 3

   Putting x=0


p(0) = 5(0) -4(0)2 + 3 => 3


(ii) p(x)= 5x – 4x2 + 3

     Putting x= -1 


p(-1) = 5(-1) -4(-1)2 + 3 

         = -5 -4 (1) + 3 {square of -1 is +1}

        = -5 -4 +3

        = -9 + 3 

        = -6


(iii) p(x)= 5x – 4x2 + 3

     Putting x= 2 


p(2) = 5(2) -4(2)2 + 3 

         = 10 -4 (4) + 3 {square of -1 is +1}

        = 10 -16 + 3

        = -6 + 3

        = -3



(i) p(y) = y2 – y + 1


p(0) = (0)2 – 0 + 1

       = 1

p(1) = (1)2 – 1 + 1

       = 1

p(2) = (2)2 – 2 + 1

       = 4 -1 

       = 3

(ii) p(t) = 2 + t + 2t2 – t3

 

p(0) = 2 + 0 + 2(0)2 – (0)3

        = 2 


p(1) = 2 + 1 + 2(1)2 – (1)3

       = 3 + 2 -1

       = 4


p(2) = 2 + 2 + 2(2)2 – (2)3

       =  2 + 2 + 8 – 8

       = 4


(iii) p(x) = x3

p(0) = (0)3

p(0) = 0

p(1) = (1)3

p(1) = 1


p(x) = x3

p(2) = (2)3

p(2) = 8


(iv) p(x) = (x – 1) (x + 1)

p(0) = (0 – 1) (0 + 1)

       = -1

p(1) = (1 – 1) (1 + 1)

       = 0 x 2 => 0

p(2) = (2 – 1) (2 + 1)

       = 3


(i) p(x) = 3x + 1

p(- ⅓) = 3(- 1/3) +1 

         = -1 + 1

         = 0


(ii) p(x) = 5x – Ï€

p(⅘) = 5(4/5) – Ï€

         ⇒ 4 – Ï€



(iii) p(x) = x2 – 1, x = 1, –1


p(1) =(1)2 – 1

        = 1 -1 

       ⇒ 0


p(-1) =(-1)2 – 1

        = 1 -1 

       ⇒ 0


(iv) p(x) = (x + 1) (x – 2), x = – 1, 2

p(-1) = (-1 + 1) (-1 -2)

         ⇒ 0 x (-3)

          ⇒ 0

p(2) = (2 + 1) (2 -2)

        ⇒ 3 x 0

        ⇒ 0

 (v) p(x) = x2, x = 0

p(0) = (0)2

       ⇒ 0

(vi) p(x) = lx + m, x = – m/l

p(- m/l)  = l(-m/l) + m

               ⇒ -m + m

               ⇒ 0


(vii) p(x) = 3x2 – 1; x = -1/3, 2/3


p( -1/3) = 3(-1/3)2 – 1

          ⇒ (3 x 1/9) - 1 

              = 1/3 -1 ⇒ -2/3

p( 2/3) = 3(2/3)2 – 1

          ⇒ (3 x 4/9) - 1 

              = 4/3 - 1 ⇒ 1/3


(viii) p(x) = 2x + 1; x=1/2

p(1/2) = 2(1/2) + 1

         ⇒ 1 + 1 

         ⇒ 2 


To find the zero of the polynomials, put p(x) =0

(i)p(x) = x + 5

    0= x + 5

    x= -5

So, -5 is the zero of polynomial p(x) = x + 5


(ii)p(x) = x – 5

     0= x - 5

    x= 5

5 is the zero of polynomial p(x) = x - 5


(iii) p(x) = 2x + 5

        0 = 2x + 5

     2x = -5

      x= -5/2

-5/2 is the zero of polynomial p(x) = 2x + 5


(iv) p(x) = 3x – 2

        0 = 3x -2

        2 = 3x

        x= 2/3

-2/3 is the zero of polynomial p(x) = 3x – 2

(v) p(x) = 3x

         0 =  3x

          x=0

0 is the zero of polynomial p(x) = 3x

(vi) p(x) = ax, a≠ 0

          0 =  ax

          x=0

0 is the zero of polynomial p(x) = ax, where a≠ 0


(vii)p(x) = cx + d, c ≠ 0, c, d are real numbers

         0 = cx + d

         cx = -d

         x= -d/c

-d/c is the zero of polynomial p(x) = cx + d, where c ≠ 0, c, d are real numbers