Ex 2.5 NCERT Solutions Class 9 Chapter 2


The solutions to exercise 2.5 (from class 9th's maths NCERT book) are given below. The exercise has 16 questions which have been explained thoroughly with proper reasoning. 

(i)  (x + 4) (x + 10)

Using identity (x + a) (x + b) = x2 + (a + b)x + ab  

    (x + 4) (x + 10) =   x2 + (4 + 10)x + (4 x 10)

  =>   x2+ 14x + 40

 

(ii)  (x + 8) (x – 10)

 Using identity (x + a) (x + b) = x2+ (a + b)x + ab  

  (x + 8) (x – 10) =   x2+ [8 + (-10)]x + [( 8 x (-10)]

  =>   x2+ [8 -10)]x + [- 80]

  => x2 -2x - 80

 

(iii) (3x + 4) (3x – 5) 

Using identity (x + a) (x + b) = x2+ (a + b)x + ab

(3x + 4) (3x – 5)=   (3x)2+ [4 + (-5)](3x) + [( 4 x (-5)]

= 9x2+ [4 -5](3x) + (-20)

 = 9x2+ (-1)(3x) + (-20)

                        = 9x2-3x -20

(iv)  ( y2+ 3/2 ) (y2 – 3/2 )

Using identity (x + a) (x + b) = x2+ (a + b)x + ab

y2+ 3/2 ) [y2 + (-3/2 )] = (y2)2+(3/2-3/2)y2+ [3/2x (-3/2)]

y4 +0 + (-9/4)

y4 -9/4

Alternate method:

Using identity (x + a) (x - a) = x2 +a2 

y2+ 3/2 ) (y2 -3/2 ) = (y2)2- (3/2)2 

y4 -9/4

(v) (3 – 2x) (3 + 2x)

Using identity (x + a) (x - a) = x2 +a2 

(3 – 2x) (3 + 2x) = (3)2- (2x)2

= 9 - 4x2

(i) 103 × 107

(100 + 3) (100 + 7)

 Using identity (x + a) (x + b) = x2+ (a + b)x + ab  

(100 + 3) (100 + 7) = 1002+ (3 + 7)(100) + (3 x 7)

= 10000 + 1000 + 21

= 11021

(ii) 95 × 96

(90 + 5) (90 + 6)  

 Using identity (x + a) (x + b) = x2+ (a + b)x + ab  

(90 + 5) (90 + 6)  = 902+ (5 + 6)(90) + (5 x 6)

= 8100 + 990 + 30

= 9120

 

Alternate method

(100 - 5) (100 - 4) 

= 1002+[ (-5) + (-4)](100) + [(-5) x (-4)]

= 10000 + (-9)(100) + 20

= 10000 - 900 + 20

= 9120

 

(iii) 104 × 96

(100 + 4) (100 - 4) 

Using identity (x + a) (x - a) = x2- a2

(100 + 4) (100 - 4) = 1002- 42

= 10000 - 16

= 9984

 

(i) 9x2+6xy + y2

Using identity x2 +2xy +y2= (x + y)2

9x2+6xy + y2 can be written as 

= (3x)2+ 2(3x)(y) + y2

 (3x - y)2

 

(ii) 4y2 -4y + 1

Using identity x2 -2xy +y2 = (x - y)2

 4y2 -4y + 1

= (2y)2  -2(2y)(1) + 12

= (2y - 1)2

 

(iii) x2  - y2/100

Using identity (x + a) (x - a) = x2 - a2

x2  - (y2 /100) = x2  -(y/10)2

 = (x +y/10) (x –y/10) 

(i) (x +2y +4z)2

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

(x +2y +4z)2

= x2 +(2y)2 +(4z)2 +2(x)(2y)+2(2y)(4z)+ 2(4z)(x)   

= x2 +4y2 2+16z2 +4xy+16yz+ 8zx  

 

(ii) (2x – y + z)2

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

(2x – y + z)2

= (2x)2 +(-y)2 +(z)2 +2(2x)(-y)+2(-y)(z)+ 2(z)(2x)  

= 4x2 +y2 +z2 -4xy-2yz+ 4zx


(iii) (-2x + 3 y + 2z)2

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

(-2x + 3 y + 2z)2

= (-2x)2+(3y)2+(2z)2+2(-2x)(3y)+2(3y)(2z)+ 2(2z)(-2x)  

= 4x2+9y2+4z2-12xy+12yz- 8zx


(iv) (3a – 7b – c)2

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

 (3a – 7b – c)2

= (3a)2+(-7b)2+(-c)2+2(3a)(-7b)+2(-7b)(-c)+ 2(-c)(3a)

= 9a2+49b2+c2-42ab+14bc-6ca


(v) (–2x + 5y – 3z)2

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

= (–2x + 5y – 3z)2

= (-2x)2+(5y)2+(-3z)2+2(-2x)(5y)+2(5y)(-3z)+ 2(-3z)(-2x)

= 4x2+25y2+9z2-20xy- 15yz +12zx

 

(vi) [1/4a - (1/2)b + 1]2

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

[(1/4)a - (1/2)b + 1]2

= [(1/4)a]2 +[- (1/2b)]2 +(1)2 +2(1/4a)(- 1/2b)+2(- (1/2)b)(1)+ 2(1)((1/4)a)

= (1/16)a2 + (1/4)b2 2+  1- (1/4)ab - b+ (1/2)a

(i) 4x2   + 9y2 + 16z2  + 12xy – 24yz – 16xz

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

4x2  + 9y2 + 16z2  + 12xy – 24yz – 16xz 

= (2x)2  + (3y)2 + (4z)2  + 2(2x)(3y) – 2(3y)(4z) – 2(2x)(4z)

= (2x + 3y+ 4z)2  

(ii) 2x2+ y2 + 8z2 – 22xy + 4 2yz – 8xz

Using identity (a + b + c)2  = (a2 +b2 +c2 +2ab+2bc+ 2ca)

2x2+ y2 + 8z2 – 22xy + 4 2yz – 8xz

(2x)2+ (y)2 + (22z)2- {2(2x)(y)} + {2(y) (22z)} - {2(22z)(2x)}

(-√2x+ y + 22z)2 or  (√2x- y - 22z)2

 


(i) (2x + 1)3

Using identity (a + b)3 = a3+b3+3ab(a+b)

(2x + 1)3= (2x)3+ (1)3+3(2x)(1)(2x + 1)

= 8x3+1+(6x)(2x + 1)

=8x3+1+12x2 + 6x

(ii) (2a – 3b)3

Using identity (a + b)3 = a3+b3+3ab(a+b)

(2a – 3b)3= (2a)3+(-3b)3+3(2a)(-3b)(2a – 3b)

= 8a3- 27b3- 18ab(2a – 3b)

= 8a3- 27b3- 36a2b + 54b2a

 

(iii) [ 3/2x+1]3

Using identity (a + b)3 = a3+b3+3ab(a+b)

[ 3/2x+1]3= (3/2x)3+(1)3+3(1)(3/2x)(3/2x+1)

= (27/8)x3+1+ (9/2x)(3/2x+1)

= (27/8)x3+1+ (27/4)x2+ (9/2)x


(iv) [x-2/3y]3

Using identity (a + b)3 = a3+b3+3ab(a+b)

[ x-2/3y]3

= (x)3-(2/3y)3-3(x)(2/3y)(x-2/3y)

= x3- (8/27)y3-(2xy)(x-2/3y)

= x3- (8/27)y3-2x2y+ (4/3) xy2

(i) (99)3

(100-1)3

Using identity (a - b)3= a3-b3-3ab(a-b)

(100-1)3=  (100)3 -1 -3(100)(1)(100-1)

= 1000000 - 1 - 300(100-1)

= 999999 - 30000 +300

= 969999 +300

 = 970299

 

(ii) (102)3

(100+2)3

Using identity (a + b)3 = a3+b3+3ab(a+b)

(100+2)3

= (100)3+ (2)3+3(100)(2)(100+2)

= 1000000 + 8 + 600(100+2)

= 1000008+60000 +1200

= 1061208

 

(iii) (998)3

(1000-2)3

Using identity (a - b)3= a3-b3-3ab(a-b)

(1000-2)3

= (1000)3-(2)3-3(1000)(2)(1000-2)

= 1000000000 - 8 - 6000000 + 12000

= 994011992

 

(i) 8a3+b3+12a2b+6ab2

8a3+b3+12a2b+6ab2 

= (2a)3+(b)3+6ab(2a+b) 

=(2a)3+(b)3+3(2a)(b)(2a+b) 

 

Using  a3+b3+3ab(a+b) = (a + b)3

(2a)3+(b)3+3(2a)(b)(2a+b) = (2a+b)3

 

(ii) 8a3-b3-12a2b+6ab2

8a3-b3-12a2b+6ab2 

= (2a)3+(-b)3-6ab(2a-b) 

=(2a)3-(b)3+3(2a)(-b)(2a-b) 

 

Using  a3-b3-3ab(a-b) = (a-b)3

(2a)3- (b)3 - 3(2a)(b)(2a-b) = (2a - b)3 

(iii) 27 – 125a3 – 135a + 225a2

 27 – 125a3 – 135a + 225a2

= (3)3+(-5a)3-45a(3-5a) 

=(3)3-(5a)3- 3(3)(5a)(3-5a) 

Using  a3-b3-3ab(a-b) = (a-b)3

(3)3+(-5a)3+ 3(3)(-5a)(3-5a)  = (3 - 5a)3

 

(iv)64a3 – 27b3 – 144a2b + 108ab2

64a3 – 27b3 – 144a2b + 108ab2

= (4a)3 + (-3b)3 – 36ab(4a - 3b)

= (4a)3 - (3b)3 - 3(4a)(3b)(4a-3b)

Using   a3-b3-3ab(a-b) = (a-b)3

(4a)3 - (3b)3 - 3(4a)(3b)(4a-3b)= (4a - 3b)3

 

(v)27p3 -1216 - 92p2 + 14p

27p3 - 1216 - 92p2 +14p 

= (3p)3 -(16)3 -3(3p)(16)(3p - 16)

Using   a3-b3-3ab(a-b) = (a-b)3


(3p)3 -(16)3 -3(3p)(16)(3p - 16) = (3p - 16)3

 


(i)           x3+y3= (x+y) (x2- xy + y2)

RHS

= (x+y) (x2- xy + y2)

= x(x2- xy + y2) +y(x2- xy + y2)

x3-= x2y+xy2+yx2-xy2+y3

x3+y3=LHS

Hence proved

 

(ii) x3-y3= (x-y) (x2 +xy + y2)

RHS

(x-y) (x2 +xy + y2)

= x(x2 +xy + y2) -y(x2 +xy + y2)

x3+x2y+xy2-yx2-xy2-y3

x3-y3=LHS

Hence proved

 

 

(i)            27y3+125z3

27y3+125z3= (3y)3+(5z)3

Using (a + b)3= a3+b3+3ab (a + b)

(3y)3+ (5z)3

= (3y)3+ (5z)3+3(3y) (5z) (3y+5z)

= 27y3+125z3+135y2z+225yz2

(ii)         64m3-343n3

=64m3-343n3= (4m)3-(7n)3

= Using  (a - b)3= a3-b3-3ab (a - b)

(4m)3-(7n)3

(4m)3-(7n)3 -3(4m) (7n) (4m-7n)

= 64m3-343n3-336nm2-588mn2



27x3+y3+z3-9xyz

(3x)3+(y)3+(z)3-3(3x)yz

 

Using identity

(a)3+(b)3+ (c)3-3abc=(a +b +c)(a2+b2+c2-ab-bc-ca)

 

(3x+y+z)[(3x)2+y2+z2-(3x)(y) -(y)(z)-(z)(3x)]

(3x+y+z)[9x2+y2+z2-3xy -yz-3xz]


P.T. x3+y3+z3- 3xyz = 1/2(x+y+z)[(x-y)2+(y-z)2+(z-x)2]

RHS

1/2(x+y+z)[(x-y)2+(y-z)2+(z-x)2]

1/2(x +y +z)[x2+y2-2xy+y2+z2-2xz+z2+x2-2zx]

1/2(x +y +z)[2x2+2y2+2z2-2xy-2xz-2zx]

½ (2) (x +y +z)[x2+y2+z2-xy-xz-zx]

 

Using identity

a3+b3+c3-3abc=(a +b +c)(a2+b2+c2-ab-bc-ca)

 

(x +y +z)[x2+y2+z2-xy-xz-zx]

x3+y3+z3-3xyz



 

Using identity

a3+b3+c3-3abc=(a +b +c)(a2+b2+c2-ab-bc-ca)

 


x3+y3+z3-3xyz=(x +y +z)[x2+y
2+z2-xy –yz - zx]

Putting x +y +z=0

x3+y3+z3-3xyz = (0)[x2+y2+z2-xy –yz - zx]

x3+y3+z3-3xyz=0

x3+y3+z3=3xyz

Hence proved

 

Using identity

a3+b3+c3-3abc=(a +b +c)(a2+b2+c2-ab-bc-ca)

then If a +b +c=0

a3+b3+c3=3abc

(i) (-12)3+ (7)3 + (5)3

a=-12, b=7, c=5

a +b +c=-12+7+5=0

Therefore

(-12)3+ (7)3+(5)3= 3(-12)(7)(5)

= - 1260

 

(ii) (28)3 + (-15)3 + (-13)3

a=28, b=-15, c=-13

a +b +c=28-15-13=0

Therefore

(28)3 + (-15)3 + (-13)3= 3(28)(-15)(-13)

= 16380

 


(i) 25a2-35a+12

Splitting the middle term

25a2-(20+15)a+12

25a2-20a-15a+12

5a (5a-4)-3(5a-4)

(5a-3)(5a-4)

a=3/5, 4/5

(ii) 35y2-13y-12

Splitting the middle term

35y2-(28-15)y-12

35y2-28y+15y-12

7y (5y-4) + 3(y-4)

(7y+3)(y - 4)

y=-3/7, 4

 

(i) 3x2-12x

3x(x-4)

Possible expressions 3, x, (x-4)

(ii) 12ky2+8ky-20k

4k (3y2+2y-5)

4k [3y2 + (5-3)y - 5]

4k [y (3y+5)-1(3y+5)]

4k(y-1) (3y+5)

Possible expressions = 4k, 3y + 5 and y – 1.